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The coagulation equation with kernel Ko = A + B(i + j)  + Cij and arbitrary 
initial conditions is studied analytically and a simple expression for the solution 
is found. For monodisperse initial conditions, we recover the known size dis- 
tribution expressed in terms of a degeneracy factor N~, which is determined by a 
recursion relation. For polydisperse initial conditions, a similar solution form is 
found, which includes a degeneracy factor N~z, also determined by a recursion 
relation. The physical meaning of N~ and the recursion relation is given. A 
method to get explicit expressions for N k and Nk~ is illustrated. Finally, the 
pre-gel solution is given explicitly and a general method to get the post-gel 
solution is proposed. 

KEY WORDS:  Smoluchovski equation; polycondensation; Flory- 
Stockmayer theory, degeneracy factor; gelation; post-gel solution. 

1. I N T R O D U C T I O N  

In recent years, the Smoluchovski equation, which describes the evolution 
of the size distribution in coagulation systems, has attracted considerable 
attention. (1) The basic equation is 

dck 1 
d , - 2  Z Kijcicj-ce ~, Kks c, (1) 

i + j - - k  j = l  

where ck(t) is the concentration at time t of clusters containing k units, 
which we refer to as k-mers. The two terms in the equation are the usual 
gain and loss terms, and K• is a rate constant for the irreversible reaction 
between i-mers and j-mers to form ( i+  j)-mers. 
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Among the many fields where the coagulation equation can be used, 
polycondensation is the most prominent one. The statistical theory of the 
size distribution for a polycondensation system was established many years 
ago. (2'3) For the f-functionality model, which is the most important, the 
details of the mathematics required to obtain the solution from the kinetic 
equation were given in 1979 by Dugek (4) and in 1980 by Ziff and Stell. (5~ 
The earlier research work on the coagulation equation can be taken all the 
way back to 1916, when Smoluchovski (6) solved the coagulation equation 
with equal Ko.. In 1962, McLeod (7) gave the solution of the equation with 
K•= t)'. The continuous version of the equation has been studied exten- 
sively in aerosol physics, (8) using many different approximation methods. A 
continuous equation including both aggregation and fragmentation was 
studied in 1979 by Aizenman and Bak. (9) 

Recent developments have mostly been concerned with the discrete 
kinetic equation (1). Some special models were solved, (1~ and the 
post-gel solution was discussed. ~12'~3) 

It is well known that the most probable size distribution for the con- 
densation polymerization system due to Flory is based on a special choice 
of initial conditions, namely a monodisperse distribution. Most of the 
kinetic work mentioned above is unfortunately also limited to 
monodisperse initial conditions. The present knowledge of the solution of 
the coagulation equation (1) and the concept of the most probable size dis- 
tribution are still almost completely limited to the case of monodisperse 
initial conditions, although some papers concerned with the discret 
equation (1) and arbitrary initial conditions have been published. 
Ziffetal. ~4) studied the kinetic equation (1) with kernel Ko.=i j and 
arbitrary initial conditions, and they nearly obtained the explicit expression 
of the size distribution. Recently, we solved the coagulation equation with 
kernel K • = [ ( f - 2 ) i + 2 ] [ ( f - 2 ) j + 2 ]  and K o = A ( i + j ) + B  and 
arbitrary initial conditions. (~5'~6~ 

In this paper, we obtain the general solution for the coagulation 
equation with a bilinear kernel Kij = A + B( i + j) + Cij and arbitrary initial 
conditions, and generalize the concept of the most probable size 
distribution from monodisperse initial conditions to arbitrary initial 
conditions. Starting from the kinetic equation, through a transformation, 
we obtain a simple solution for both monodisperse initial conditions and 
polydisperse initial conditions. In the case of monodisperse initial con- 
ditions, the most probable size distribution form is recovered, including a 
degeneracy factor Nk, which satisfies a recursion relation. For polydisperse 
initial conditions, a similar solution is found, including a factor Nkt, which 
also satisfy a recursion relation. The physical meaning of Nkt and the recur- 
sion relation is explained using terms from polymer science and the method 
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by which we get an explicit expression for Nk and Nkt is illustrated. We 
obtain the time-dependent part of the solution by solving the moment 
equation before gelation. After gelation, a general method to get the time- 
dependent part of the solution is proposed, and a method based on a 
generating function method is illustrated. The special model with kernel 
Ko.= (E+Fi)(E+ Fj), is solved as an example. 

2. GENERAL SOLUTION FORM 

We consider the kinetic equation 

dck 1 
- ~ [A+B(i+j)+Ci j]c ic j  

dt 2 i + j - k  

-- ck ~ [ A + B ( k + j ) + C k j ] c j  (2) 
j 1 

with ck(t = O) = ck(O). 
Define the nth moment as usual 

m , =  ~ k~ck(t) (3) 
k=l 

It satisfies the equation 

2(/I,=-5Z [ ( i + j ) " - i " - f f ] [ A + B ( i + j ) + C i j ]  cicj (4) 
l,J 

up to the "gel point," where the second moment and higher moments 
diverge. To solve the kinetic equation (2), we introduce the transformation 

c~(t)=xk(t)exp - [(A+Bk) Mo(t ' )+(B+Ck)Ml(t ' )]dt '  (5) 

which includes Mo(t) and Ml( t  ) as parameters. 
Substituting (5) into (2), we have 

1 
~i [A+B( i+j )+Ci j ]x i x j  

{f' } x exp - [AMo(t') + BM~(t')] dr' (6) 
JO 

To simplify (6), we introduce a new variable 

;o{;o } v =  exp - [AMo(t")+BMI(t")] dt" dt' (7) 
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Substituting (7) into Eq. (6), we have 

dx k 1 
dr =-2 ~ [A+B( i+j )+Ci j ]x ,x j  (8) 

t + j = k  

Equation (8) has a simple form, and we can obtain its solutions by 
integrating successively from k = 1. This process at the same time also 
shows the uniqueness of the solution. 

For some special kernels, Eq. (8) can be solved by introducing a 
generating function as done in a previous paper. ~ For the general kernel, 
however, the partial differential equation for the generating function is 
quite complicated, and in general the solution probably cannot be written 
in a compact form. Here we therefore proceed in another way, assuming 
the following form for the solution: 

k 

xa: = ~ NkFd- 1 (9) 
l = 1  

The correctness of this form can be shown by direct integration of Eq. (9) 
from k = 1. Substituting (9) into (8) and comparing the coefficients of the 
same powers of ~ yields a recursion relation for Nkt, 

(/-- 1) Nk,= Y'. NipNjqEA+B(i+j)+Cij] (10) 
i + j = k  

p + q  landp<~i,q<~j 

with Nkt = ck(O). 
Using Eq. (10) and the initial condition, any Nkl can be determined. 
The solution of the kinetic equation (2) hence can be written as 

{;o } ck(t)= ~ Nklr l lexp -- [(A+Bk) Mo(t ' )+(B+Ck)Ml(t ' )]dt '  
l = 1  

(11) 

where the parameters Mo(t ) and Ml(t) can be obtained from the differen- 
tial equation (4) for times smaller than the time for gelation3 8) Hence we 
have a time-dependent Mo and a constant M1, 

2 - ( B + C ) t  B2=A C (12) 
Mo(t) - 2 + (A + B)t' 

(AC-- 8 2 )  1/2 - -  (B + C) tan[(AC-- B2)  1/2 t/2] 
Mo(t)-(AC_B2)I/2T(A+B)tan[(AC_B2)I/2t /2] ,  A C - B 2 > O  

(13) 
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Mo(t) = ((B 2 - AC) 1/2 { 1 + exp[ - (B 2 - AC) 1/2 t] } 

- ( B + C ) { 1 - e x p [ - ( B  2 - A C )  rot]}) 

x ((B 2 - A C )  1/2 {1 + e x p [ - ( B  2 - A C )  '/2 t]} 

+ (A+B){1-exp[ - (B2-AC)I / z t ] } )  -1, Bz--AC>O 

(14) 

where we take the initial conditions to be M0(0)= 1 and M I ( 0 ) =  1. 
Substituting Eqs. (12) (14) into Eqs. (11) and (7), we have the general 

solution before gelation for the kinetic equation (2). 
It is interesting to write this solution in a slightly different form. By 

changing the variable of integration from t to Mo(t ) and noting that Mo 
satisfies Eq. (4), one obtains from the integration of Eq. (7) 

r = 2[Mo(O ) - Mo(t)]/Q (15) 

with 

Q=A + 2B+ C (16) 

The integration in Eq. (5) can be carried out in the same way as before. We 
have 

exp - [(A+Bk) Mo(t)+(B+Ck)]dt'  

=[AMg+2BM~ ( B / A l k + I Q  exp FI_ - k ( C - ~ - ~  2 ) t ]  (17) 

Substituting Eqs. (15) and (17) into (11), we then have 

) ' l  
c~= ~ Nktexp k - C  t 

/ = 1  

• {AMg+2BM~ (18) 

It is clear from this expression that when B2/A--C=0 the solution 
becomes a function of Mo(t) only, and this makes a simple probability 
explanation possible. 

3. THE  S O L U T I O N  OF T H E  C O A G U L A T I O N  E Q U A T I O N  W I T H  
M O N O D I S P E R S E  IN IT IAL C O N D I T I O N S  

To understand the general expression for the size distribution for 
polydisperse initial conditions, we first discuss the simplest case, assuming 
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all initial particles to be monomers, which has been solved by van Dongen 
and Ernst. ~13) This case also has been studied using a statistical method. 

We have 

G(t=O)=6kt (19) 

and in this case Eq. (8) has the solution 

X k  = Nk.ck 1 (20) 

Substituting Eq. (21) into Eq. (18), we have the recursion relation 

( k - 1 ) N k =  ~ [A+B(i+j)+CO']NiNj  (21) 
i + j = k  

with N~ = 1. 
The solution before gelation then has the following form: 

ck(t)=Nkexplk(B~-A--C)t l  {2[1--Mo(t)]}k-X 

x [AM~ + 2BM o + C] ~WA)k + 1 Q -~WA + 1) (22) 

where M0 is a function of t, as expressed in Eqs. (12~(14). 
The combinatorial explanation for Eq. (21) has been known for some 

years. (17'~8) Nk is the number of configurations in which k monomeric units 
are combined to form a k-mer. The kernel K o = A + B(i + j )+ Cij is the 
number of ways of bonding an i-mer and a j-mer together. The number of 
ways to build an i-mer and a j-mer and then combine them together is 
equal to the number of ways a k-mer can be formed out of monomers 
repeated k -  1 times. In the statistical theory of condensation 
polymerization (19) Nk is a degeneracy factor. It is worthwhile to note that 
the parameter Nk originally came from equilibrium statistical theory, and 
that the appearance of the recursion relation (21) in that connection was 
assumed to be caused by the reversible polymerization system. (2) 

The only thing we can do further with the general form of the size 
distribution (23) is to write Nk in an explicit form. For a general bilinear 
kernel, this is difficult and may be impossible. Using the generating 
function technique, for example, we obtain the differential equation 

(Og) z (23) 
2 ( ~zz - g ) = A g Z + 2 B ~zz g + C \-~z j 

with 

g(z, t )=  ~ Nk(t)e zk (24) 
k = l  
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Equation (23) has a simple form, and we can obtain Og/~z as a function of 
g, which yields a differential equation with separated variables. We have 
finally 

dg (25) f Z 
J 2 - Bg +_ [gZ(B2 - A C )  - (B + 2C) g + 4] 1/2 

We have not succeeded in writing the solution of this equation in a simple 
form, however, in order to be able to use the Lagrange expansion to get an 
explicit expression for Nk. 

At present, we therefore must be satisfied with the solution of the 
coagulation equation given by (22) containing the parameter N~, which 
can be obtained from the recursion relation (21). In some special 
situations, Nk has a simple form. Some work in this direction has been 
done previously; here we just mention the work of van Dongen and 
Ernst, (1~ who gave the explicit expression for Nk for the coagulation kernel 

K,j= [ ( f -  1)i+ 1 ] [ ( g -  1 ) j +  13 + [ ( f -  1 ) j +  1 3 [ ( g -  1)i+ 13 

namely 

Nk k [ ( f -  1)k+ 1] m+,=k 1 m 

This kernel corresponds to the important polymerization model in which 
the units are As RBg and A connects with B only. In this paper we give the 
solution to another important model, with K o. = (E  + Fi ) (E  + Fj), where E 
and F are not restricted to be integers. We give the explicit expressions for 
Nk using a generating function. 

The recursion relation in this case is 

( k - 1 ) N k =  ~ ( E + F i ) ( E + F j ) N i N j  (27) 
i + j = k  

Introducing the generating function 

G =  ~ ( E + F k )  N~z k (28) 
k = l  

we obtain the partial differential equation 

-~z - G = EG 2 + 2FG--~z (29) 

Solving (29) for OG/Oz, we obtain 

OG _ �89 2 + G 

Oz z (1 - -  FG) (30) 
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The solution of (30) is 

CG 
Z ~ (lEG + 1)2F/E+ 1 

where C is an integration constant. 
The Lagrange expansion gives 

zk F d k , G = C ~ L ~ ( E G + 2 ) ' 2 r / E + I ) k ] G  = 

From (28) we have 

(E+ Fk) Nk = ~.T \ az~/z=o 

(31) 

(32) 

(33) 

Hence, the configuration number Nk can be written in the following form: 

1 1 
Nk (E+Fk)!(2---~k k'~/'2Fk . . . .  + - + )~-ff + k  1) ( ~ k  2 ) ( E )  k (34) 

The pre-gel solution of the coagulation equation with kernel K0= 
(E + Fi)(E + Fj) can now be written down explicitly, 

(E + F)k (2F k k'~[2F k ... 2) 
ck(t) k!(E+Fk) kE + )k-ff + k - I )  ( ~ k +  

when E = 2 ,  F = f - 2 ,  this corresponds to the f-functionality 
polymerization model, for which we have the well-known result 

fk[(f--1)k]! tk_l{ 1 ) ( f  1)k+ l  

ck(t)=k! [ ( f - 2 ) k  + 23! \ ~ - - f i J  (36) 

4. S O L U T I O N S  FOR P O L Y D I S P E R S E  IN IT IAL  C O N D I T I O N S  

Generally, the coagulation equation with polydisperse initial 
conditions is assumed to be difficult to solve, and very few papers on the 
subject have been published. In this section, we analyze the new result of 
the pre-gel solution of the kinetic equation (1) with bilinear kernel and 
arbitrary initial conditions. 

Actually, the solution given by Eq. (8), which we have obtained from 
the kinetic equation (2), is surprisingly simple. The parameter Nkt is the 
interesting quantity in this expression. Comparing with monodisperse 
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initial conditions, we can give a physical explanation for Nkt and the 
relation (10). Using terms from polymer science, Nk~ is the number of ways 
of forming a k-mer out of l initial particles. The k-mer can be separated 
into initial particles at l -  1 places to give an i-mer formed out of p initial 
particles and a j-met formed out of q initial particles, with i +  j =  k and 
p + q = l, The left-hand side of (10) is the total number of ways in which we 
can separate the k-mer, and this is equal to the number of ways in which 
we can build up the k-met out of l initial particles. 

Not only does N~t and relationship (10) have a physical explanation, a 
probability explanation can also be given to the size distribution, at least 
for some coagulation equations with polydisperse initial conditions. In a 
previous paper ~5) we generalized Flory's probability argument from 
rnonodisperse initial conditions to polydisperse initial conditions. From the 
expressions (18) and (22) we see that, if there is a probability explanation 
of the size distribution for some kernel and monodisperse initial conditions, 
there is a probability explanation of the size distribution for the same ker- 
nel and polydisperse initial conditions. The correspondence of Nk and N~t 
and their physical explanations play an essential rule. The actual situation 
is, however, that only in the special cases for which BZ-=AC is a 
probability argument possible, and of these Flory's probability argument 
was only applied to the simplest cases with Ko= (E+Fi)(E+Fj), par- 
ticularly with E = 2, F =  f - 2 .  Generally, the kinetic method is more dif- 
ficult to carry out than the statistical method and the probability argument. 
Using the kinetic method, we can, however, easily go further than the 
statistical method and the probability argument permit. Taking the 
equation with monodisperse initial conditions as an example, it is difficult 
to write the solution (22) as a function only of Mo and M~ or p, the extent 
of reaction, and, as is known, both statistical theory and the probability 
argument are based on these functions. 

In some special cases, Nkt can be written in a compact form; in this 
paper, we give an example for an f-functionality system. We then have 

( l -  1) Nk,= ~ [ ( f - Z ) i + Z ] [ ( f - Z ) j + 2 ] N i ; N m  (37) 
i + j = k  

p + q = l a n d  p~i,q<~j 

Introducing the generating function 

g(zl, z2) = ~ Nkzz] f 2)~ +2 exp[z2(/-- 1)] (38) 
k,l 

we have the partial differential equation 

c~g l ( c~g ,~2 
Oz2 -- 2 exp Z 2 ~ ~Zl,,]t (39) 
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Setting 
y = Og/~zl (40) 

one can obtain a linear partial differential equation: 

0y @ 
~z---~ - exp z 2 y ~ = 0 (41) 

Using the Lagrange-Charpid method, we obtain the general solution 

y = u(zl + y exp z2) (42) 

where u is an arbitrary function. 
From (38), when z2 ~ -0% we have 

g(z l ,  z2) ~ ~ ck(0) z] f 2)k+2 (43) 
k 

and 

y ~ ~ c ~ ( 0 ) [ ( f -  2)k + 2] z] f-2)k+2 = O(z) 
k 

In (43), when z2--, -0% y e x p z 2 ~ 0  , and we have 

y = O(Z 1 ) 

The solution that satisfies the boundary condition is 

y = O(zl + y exp z2) 

We further set 

and 

(44) 

(45) 

(46) 

Using the Lagrange expansion on (48), treating z 2 as a parameter, we have 

z~ ( k + m -  1)! Fq)'J'] "j 
= ~ ~ 2 ~ j n ~  exp(mz2) 1-I [. j-~-j  (49) 

k =  l {nj} j 

where 

g0(~)=0(r ~ c k ( O ) [ ( f _ 2 ) k + 2 ] z ~ f  2)k (50) 
k = l  

Zl = ~ - y exp z2 = ~ - 0(4) exp z2 (48) 

= zl + y exp z2 (47) 
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From (38) it is obvious that 

[ ~(f 2)k+,y ] 

Nk'= LT zT- r o(--777p p z#  lJzl  =0 
e x p  z 2 = 0 

Noting that 

1 1 

( l -  1)! [ ( f - 2 ) k +  2]! 

Y = (3 - z l )  exp(-z2)  

we have 

N k  l m 
1 ~ [ ( f - 2 ) k + l ] !  

[ ( f - 2 ) k +  2]! {nD 1-[j nj! H,. { [ ( f - 2 ) j +  2] cj(0)}m 

The pre-gel solution for an f-functionality system can then be written as 

c~(t) = 

where 

1 ~ [ ( f - 2 ) k + m ] !  
[ ( f - 2 ) k +  2]! {+} l-[j nj ! 

x 1-[ { [ ( f - 2 ) j + 2 ]  cj(0)} n 
J 

t m  i 

(]  _[_ ~ o l i ) ( f  -- 2)k  + r n +  1 

/~o = ~ [ ( f -  2)k + 2] ck(0) 

and the summation goes over all sets {nj} that satisfy the conditions 

jnj = k, ~ nj = m 
J j 

This result agrees with what we obtained earlier. (14) 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 

5. POST-GEL SOLUTIONS 

For coagulation equations with a bilinear kernel for which c # 0, the 
second moment and all higher moments will diverge at a critical time t<, 
which corresponds to a soNgel transition in polymer chemistry. Two 
models have been used to describe the behavior of the system after 
gelation, proposed by Flory and Stockmayer, respectively. According to 
Ziff and Stell, (5) in Flory's model, all free functionalities can react with each 
other, and the form of the time-dependent size distribution remains 
unchanged. In Stockmayer's model, however, the sol cannot react with the 
gel. Kinetically, this corresponds to keeping the original kinetic equation 
unchanged. In this paper, we are interested in obtaining the solution of the 
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original equation (2) after t>tc, and this obviously corresponds to 
Stockmayer's model. 

The existence of the post-gel solution for the coagulation equation has 
been shown by some authors, (12) but not the uniqueness of the solution. In 
this paper, we concentrate on building up equations for the functions Mo(t) 
and Ml(t) after gelation. When Mo(t) and MI(0) are determined we then 
have the solution after gelation from (18) and (20). Just as we discussed in 
a previous paper, (14) Mo(t) and MI(t ) are discontinuous at the gel point 
even though Mo(t ) and M~(t) are continuous. A direct way to get Mo(t) 
and Ml(t) is by using expression (11) to get Mo(t) and Ml(t) from (2), 
respectively, and then solve these equations to get Mo(t) and Ml(t) after 
gelation. 

This is easy to say, but quite complicated to do. In special situations, 
for which the generating function method works, this procedure can, 
however, be used. In the following we illustrate the method with the kernel 
Ko= (E+ Fi)(E+ Fj) and monodisperse initial conditions. In this case we 
are dealing with the kinetic equation 

ck=2i+l ~.=~ (E+Fi)(E+Fj)cicj_(E+Fk)ck ~j=l (E+Fj) cj (57) 
With the transformation 

and 

where 

ek(t)= xk(t) exp [ - ( E  + Fk) f~ #(t') dt'] (58) 

= exp - 1~(t")dt" dt' (59) 

14t) = ~ (E + Fk) ck(t ) (60) 
k 

we have the differential equation 

1 

i + j = k  

(E + Fi)(E + Fj) xixj (61) 

We solve this equation directly by introducing the generating function 

G= ~ (E+rk)x~(r)z ~ (62) 
k = l  



Cluster Size in a Coagulation System 681 

to get 

OG OG E 2 --= Fz G +-~ G 
~ ~z 

The solution that satisfies the initial condition is 

In (64) we set 

Hence 

and we have 

G [-ErG ]-(2Fie+l) 
z =g-+-? L-5- + ,  

z=expI-Ff~ #(t')dt' ] 

Efo ] GI . . . .  p [_F~to~( t , )dC]=ktexp  E #(t')dt' 

exp [ -F  f] l~( t') dt'] =l~ exp[ E ~'~ #( t') + F 

x {E~#exp[E-ff ~ 

This is the equation we want to establish. 
If we further set 

and hence 

we can write Eq. (67) as 

that is, 

= e x p  �89 I~(t') dt' 

~F~O 

E(E+F)(k-~= (k t) 2d t+~ ,  -1 
2 

--(2F/E+ 1) 

(63) 

(64) 

(65) 

(66) 

(67) 

(68) 

(69) 

(70) 

(71) 

822/49/3-4-18 
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Differentiating this, we have 

E(E+F)2 4, 2~=__ 

Not ing  that  

t fO I -- 2FIE -- 1 2 F + E  4, ~ 2 d t + O _  1 
E 

;; f;(f: ) 4, 2 d r = l +  r dt 

we see that  (~ = 0, 4, = E ( E  + F)/2 is a solution, which yields 

(72) 

(73) 

/~ = 2#o/(2 + E#ot)  (74) 

cor responding  to the pre-gel solution. After a lengthy calculating, we can 
also show that  

EMo(tc)  + F 
/~(t > tc) = (75) 

1 + ( E + F ) l ~ o ( t e ) ( t -  tc) 

together  with 

# =  2#o/(2 + Epot)  (t <~ tc) (76) 

is a solution of (67). It  gives the post-gel  solution 

c (tc) 
ck(t > t) = 1 + (E + F) Po(tc)(t - tc) 

(77) 

Equa t ion  (77) is a special case of the result of  van Dongen  and Ernst.  (13) 
The critical t ime tc appear ing  above  can easily be obta ined  f rom the 
m o m e n t  equa t ion  given by D r a k e  (8) for the general bil inear kernel 

1 
tc - A C  = B 2 

B + CM2(0)  ' 

1 tan i ( A C -  02 )  1/2 
A C >  B 2 (78) 

tc - ( A C -  B2) ~/2 B + CM2(O) ' 

1 B + CM2(O)+ (B 2 -  A C )  1/2 B2 
t c = (B 2 _ AC)X/2 In B + CM2(O) + (B 2 - A C )  ~/2' A C  < 

For  the model  with k~ = (E + Fi ) (E  + Fj), we have 

tc = 1 / [ E F +  F2M2(0)]  (79) 
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6. C O N C L U S I O N S  A N D  D I S C U S S I O N  

The solutions of coalgulation equations with bilinear kernels can be 
written in a simple form both for monodisperse initial conditions and 
polydisperse initial conditions such as (18) and (22). The configuration 
number or degeneracy factor is Nk in the case of monodisperse initial 
conditions and Nkt in the case of potydisperse initial conditions, and they 
satisfy the recursion relations (21) and (19). The probability argument can 
only be used successfully for some special kernels, but it can be used both 
with monodisperse initial conditions and polydisperse initial conditions. 
The concept of a most probable size distribution can be used not only for 
monodisperse initial conditions, but also for polydisperse initial conditions, 
corresponding to different size distribution forms. Formally, the post-gel 
solution has the same form as the pre-gel solution, but the expressions for 
the time-dependent parameters that enter into it are much more difficult to 
obtain than those for the parameters in the pre-gel solutions. Whenever a 
generating function method works, an equation that determines the time- 
dependent part of the post-gel solution can, however, be established. In 
most cases, we use a coagulation equation with the kernel K,j= 
(E+Fi)(E+Fj) as an example, but for N~;, we can only get an explicit 
expression for an f-functionality system. 

It is still unknown if coagulation equations with other kinds of kernels 
have solutions of the same form as the most probable distribution, and, if 
so, what the degeneracy factors Ark and Nk; are. 
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